Decision-tree analysis of clinical data to aid diagnostic reasoning for equine laminitis: a cross-sectional study.
نویسندگان
چکیده
The objective of this cross-sectional study was to compare the prevalence of selected clinical signs in laminitis cases and non-laminitic but lame controls to evaluate their capability to discriminate laminitis from other causes of lameness. Participating veterinary practitioners completed a checklist of laminitis-associated clinical signs identified by literature review. Cases were defined as horses/ponies with veterinary-diagnosed, clinically apparent laminitis; controls were horses/ponies with any lameness other than laminitis. Associations were tested by logistic regression with adjusted odds ratios (ORs) and 95% confidence intervals, with veterinary practice as an a priori fixed effect. Multivariable analysis using graphical classification tree-based statistical models linked laminitis prevalence with specific combinations of clinical signs. Data were collected for 588 cases and 201 controls. Five clinical signs had a difference in prevalence of greater than +50 per cent: 'reluctance to walk' (OR 4.4), 'short, stilted gait at walk' (OR 9.4), 'difficulty turning' (OR 16.9), 'shifting weight' (OR 17.7) and 'increased digital pulse' (OR 13.2) (all P<0.001). 'Bilateral forelimb lameness' was the best discriminator; 92 per cent of animals with this clinical sign had laminitis (OR 40.5, P<0.001). If, in addition, horses/ponies had an 'increased digital pulse', 99 per cent were identified as laminitis. 'Presence of a flat/convex sole' also significantly enhanced clinical diagnosis discrimination (OR 15.5, P<0.001). This is the first epidemiological laminitis study to use decision-tree analysis, providing the first evidence base for evaluating clinical signs to differentially diagnose laminitis from other causes of lameness. Improved evaluation of the clinical signs displayed by laminitic animals examined by first-opinion practitioners will lead to equine welfare improvements.
منابع مشابه
پیش بینی روش درمان بیماری قلبی با استفاده از الگوریتم های داده کاوی
Background and Aim: Nowadays heart disease is very common and is a major cause of mortality. Proper and early diagnosis of this disease is very important. Diagnostic methods and treatments of the disease are so expensive and have many side effects. Therefore, researchers are looking for cheaper ways to diagnose it with high precision. This study aimed to identify a model for the treatment of he...
متن کاملمقایسه مدل درخت تصمیم و رگرسیون لوجستیک در ارزیابی پوکی استخوان
Introduction: Early detection of osteoporosis is a key to preventing of it; but recognition, without the use of appropriate diagnostic methods, due to the complexity of risk factors and gradual bone loss process, is problem. The purpose of this study is to develop and efficiency evaluation a predictive model of osteoporosis using decision tree technique as a diagnostic method based on available...
متن کاملارزیابی عملکرد واحدهای تصمیمگیرنده با استفاده از تحلیل پوششی دادههای پنجرهای و درخت تصمیم
Efficiency is an issue of importance and interest to both managers of different organizations and customers who use the products and services of these organizations. The aim of this research is to study the efficiency of pharmaceutical companies accepted in the Stock Exchange Organization by using Window Data Envelopment Analysis (WDEA) and then, to provide some rules based on the decision tree...
متن کاملA novel model of clinical reasoning: Cognitive zipper model
Introduction: Clinical reasoning is a vital aspect of physiciancompetence. It has been the subject of academic research fordecades, and various models of clinical reasoning have beenproposed. The aim of the present study was to develop a theoreticalmodel of clinical reasoning.Methods: To conduct our study, we applied the process of theorysynthesis in accordan...
متن کاملUsing Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach
Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Veterinary record
دوره 178 17 شماره
صفحات -
تاریخ انتشار 2016